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A REMARK ON REGULARIZATION IN HILBERT SPACES
J. M. lLasry and P. L. Liona.

Introduction: Let H be a Hilbert space and let us denote by |¢| and

{*,*) 1its norm and scalar product respectively. Let u € BUC(H) - space of
bounded uniformly continuous scalar functions. The problem we consider here
concerns the approximation of u by a sequence ue of functions in C;(H)
or even cg"(n)"" such that ue converges uniformly on H to u. The
usual way to find u. in the case when H is finite dimensional is to use

convolution with smooth kernels: this method is not only explicit but enjoys

a few important properties like for example:

(1) sup |V“€' < c, sup ful
H H
(2) sup |Vu_(x) = Vu_(y)] |-y |~ < c_ sup Jul
xty H
(3) inf u <€ ue < supu on H
H H
(4) sup |Yu_| ¢ sup |u(x) - uty)| Ix-y|~1 < 4= .
H xty

In addition, the reqularization commutes with translations, is uniformly

bounded in c}'! if uwec)!

and it is order-preserving ...
Unfornately, this method breaks down when R is infinite dimensional.

Our goal here is to present a simple method which works for arbitrary Hilbert

spaces and which still enjoys properties (1) - (4), which commutes with

CEREMADE, University Paris-Dauphine, Place de lattre de Tassigny, 75775 Paris
Cedex 16, France.
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translations, preserves order ... We have in fact explicit formula for the

q
ﬁ approximations ug: indeed, we prove in section I below that
% u_(x) = sup inf [u(y) + %E |z-y|? --% |z-x|
) z€H y€H

as well as
v - 1
< u_(x) = inf sup [u(y) - T3 Iz-y|2 + %-Iz-xlzl
- z€H yeH
. are elements of C&", that they satisfy (1) - (4) and in addition
i (5) ue €uc« u. on H .
; and ;;, u. converge uniformly on H to u.
Y

There might exist other regularization methods valid in infinite
dimensions (satisfying (1) - (4) for instance) but we are not aware of any (in
particular as explicit as the above formula). Let us mention that the main
difference with convolution type reqularizations (in finite dimensions)
consists in the nonlinearity of the above method.

At this stage, we would like to make a few remarks on U ;; and in

particular we wish to pinpoint the relations with Hamilton-Jacobi equations. .

Indeed, consider the following equations

: b

g 1 2
- (6) =~ += || =0 in Hx]O0,+=[ ,u =v in H
- 3t * 2 S QL S
du 1 2 -
: resp.(7) T |Vu| 0 in Hx]O,»[ ,u't=° v in H ;
d where H is, to simplify, finite dimensional and v € BUC(H). Observe that,

formally, (7) is obtajned from (6) by "reversing time". Then, it is known
that the "right solutions"™ of (6) (resp. (7)) namely the viscosity solutions
introduced by M. G. Crandall and P. L. Lions {3) -~ see also for further

X properties M. G. Crandall, L. C. Evans and P. L. Lions [2] - are given by the

Lax-Oleinik formula:

(8) u(x,t) = inf {v(y) + —;; |x-y |2} .
yeH
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(resp. (9) u(x,t) = sup {v(y) - %;-Ix-ylzl) ’
yeH

and these solitions form a semigroup that we denote by Sp(t) (resp. S_p(t))
where F(p) = %-lplzz for a proof of these facts we refer to P. L. Lions [6].
We observe next that the proposed reqularized functions are nothing but:

€ -—
u = S_P(EJ SF(S)u, u, = Spbg) S_F(E)u. In fact, as we will see later on, we

could as well introduce some two-parameters approximation of u namely

Y5 S_p(8) Sp(€)u, U 5 ™ Sg(8) S_(e)u ,

choosing 0 < § < ¢.

Let us emphasize that (7) corresponds only formally to a time reversal of
(6) and that in general (because shocks are forming and entropy increases)
S_p(8) Sy (e)u does not coincide with Sp(€=8)u. This is the case essentially

only when u is smooth, say c%"(n), in which case we do have for ¢ small

enough: 2;,6 = sr(c-S)u' ;;,6 = s_F(e-G)u and thus Be,s';;,s + u as

d + €.

The reason for the regularity of u ,.; {(or ';; 5 is the
’

Ber Y Le ¢!

following: if v @ Cp(H) then Sgp(t)v (resp. S_p(t)v) is for t > 0 in

w".(ﬂ) and semi-concave (resp. semi-convex) and more precisely we have

Sp(t)v - %;-lx-xolz is concave for all xg € H

(resp. S_pv + o— |x-x0|2 is convex for all x; € H). Such results first
considered in P. L. Lions [6]) are elementary observations that we recall in
gsection 1I below. Hence, v s (for instance) is for any § > 0 semi-convex
but in addition since sF(e)u is semi-concave for all € > 0 with “second

derivatives” bounded by 1/¢ it is not difficult to check on the

characteristics (at least formally) that for & < ¢, S_L(§)[S (e)u]l is still

- semi~concave. And this yields the Cﬂ" regularity! This second step has

4
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already been ohserved in I. Fkeland and J. M. lasry (5]. Let us also mention
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that if v is convex, then S,(t)v is nothing else than the Yosida
approximation of v (of order t) and it is well-known that
sp(t)v e cfram).

We conclude this introduction by mentioning that our motivation for the
reqularization problem comes from the study of Hamilton-Jacobi equations in
infinite dimensional spaces which is being developed by Barbu and Da Prato
[1], M. G. Crandall and P. L. Lions [4] and that the above explicit
reguarlization ideas are being applied in ([4].

Let us finally mention that everywhere below we identify H with its

dual.

I. Main properties of the reqularizations

Let u € UC(H) i.e. assume there exists m continuous, nondecreasing on
(0,#[ such that: m(0) = 0, m(t+s) € m(t) + m(s) for s,t > 0 and
(10) lu(x) = u(y)| € m(|x-y|), for all x,yen .
We consider for 0 < § <€, x e H

1 2 1 2
I S_F(G) SF(E)u = gup inf (u(y) + 3 |z=y|“ - 3T |z-x]| 1
2€H y€H

- 1 2 1 2
u =8 _(8) S__(€)u = inf sup [u(y) - == |z-y|“ + |z=x|“1 .
€, F F Z&H ueH 2¢ Pl

Theorem: The functions . ;e s belong to c"’(n). Let te be the
’

Be,8
2
te

-1
maximum positive root of: = 2¢ m(te), so that t:e € /2-’ 0 as € + 0,

We have the following inequalities:

(11) -°<infu<2€'6<u<ue'6<supu<- on H ;
H H
(12) s:p |_\1€'6-u| < m(t)s s:pluc’G-ul <mt,)

2
t
- ()
(13) Ju ,6(") -u 'G(y)l < m(lx=y|), |ue'6-u| < m(teﬂ:c) toF !




t
€ - €
(14) s:p 1‘72‘,5! < o s:p |Vue'6| <=

(15) |Vu, 500 - Vue'a(y)l < ce'élx-yl, IVue'c(x) - Vue's(y)l < ce'clx-yl

-1

for all x,y € H, where Ce s " Max(G",(c-G) )e
[

|
Remarks: i) If u e C1'1(H), Vu e w"'(a). then 9 ™ Sr(c-G)u for ¢
’
small enough (while u =8 _(€=§)u) and Vu remains uniformly bounded
5,6 -F —6,6

in w"'(u) for € small enough.

ii) Clearly, the regularjzations commute with translations and they preserve

order (if u<€< v on H, then 26’5 < !c,G' “e,& < Ve,s"

1ii) 1f u € Cy(H), then B 80 Ye g e cg'1(ﬂ) and they converge to u
pointwise in H as ¢€,5 + 0. More generally, if u @ C(H) and satisfies
Jutx)| € ct1 + lxlz) on H
then for € small enough (and 0 < § < €) u, " e C"‘(H), they converge
c,8'=,8
pointwise to u as ¢,§ + 0, and V;; s may be bounded together with its
’
Lipschitz modulus on balls by constants depending only on the growth of u on
balls ... In addition if u is uniformly continuous on balls ;k, one
checks easily that u R ;' converge uniformly on balls to u.
=€,8 €,8
iv) If one is only interested in regqularizing functions in UC(H) into

Lipschitz functions, it is enough to consider:

u (x) = inf (u(y) + %-lx-ylp]

yeH
for any p? 1 (if p =1, one has to take ¢ small enough) - and one may
replace %-|x|p by %-0(|x|) for a general ¢ even, convex, ®(0) = 0 and

¢ >+ ag t + 4, In addition, let us mention that this regularization

works in an arbitrary Banach space (or even metric spaces, take %-d(x.y)l)

v) Let us finally mention a few additional properties of the above

regularization: first of all, if u is convex (resp. concave) then b s
[}

ue § are also convex (resp. concave). Indeed we just have to prove that if

-5-
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u is convex then SF(e)u is convex. But obgerving that u(y) + ——'lx-y|2

is jointly convex in (x,y), and using the lemma in section II, we see that
SF(e)u is convex. The second property we wish to mention concerns sub-
solution of convex Hamilton-Jacobi equations: let F € C(H) be convex, let
f € UC(H), let u € UC(H) be a viscosity subsolution (see [4] for the
precise definition) of
F(Vu) € f(x) in H .

Then it is possible to show that Ee,&' ;;,5 satisfy

F(Vv) € £(x) + u(e,§) in H
where u(e,§) + 0 as ¢€,6 + o,
vi) We would like to mention that if € 2 €' > §' > § > 0 then one checks
easily that

He,s S Ber,s €U Ueu g0 SUc 5

Another inequality is obtained by remarking that we have

2
—e,s(") € inf sup [u(y) + o 'Y z| 5 lz=x]“]
y€H zeH
1 2
= inf [u(y) + 3255y ly-x|“1 = Sp(e=8)ulx)

y€H

while Ue s > S_F(C-G)u on H.
vii) Another property of the Inf-Sup convolutions u. s ;; § concerns
’ ’

critical points. 1Indeed, first of all, these regularizations preserve the
symmetries of u: for instance, if u is even on H than u ¢ ;. are

-€,6 €,8
also even. More generally, if u is invariant by a group of isometries of
H, so are U 5 ;; 5° This fact is interesting in itself but also funda- .

r ’

mental for critical point theory. Next, we remark that S _(t) (for t

iF
small) preserves the critical points of u at least if u € cl 1,
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; Finally, it was observed in I. Fkeland and J. M. Lasry [S5) that if u is

Y semi-convex and satisfies (P.S.) condition then for t small v = S_p(t)u

. is c"' and also satisfies (P.S.). Furthermore, Vv may be used as a
pseudo-gradient for u. Applications to critical point theorems are given in
{S] (see also A. Pommellet (7] for related considerations).

. We conjecture that if u is Lipschitz (to simplify) and satisfies (P.S.)

N (with Clarke gradient), then Ee,s";?,é also satisfy (P.S.). This would

enable one to do critical point theory for nonsmooth functions via this

regularization.

y viii) The last property (!) of the inf-sup convolutions we wish to mention

. concerns the possibility of extending and reqularizing a function u

! uniformly continuous on a subset K of H: indeed, consider

1

1 2 2
(x) = sup inf [uly) + EE'ly-z| - 35 | z=x|*)

u
=€,8 z€H yex

. 1,1 €
then 26,6 ec (H), u ? Ec,s ? u m(te) on K, 'vgt,G(X)l < T on H...

II. Proofs.

MY s 2 s ata A

We first show the string of inequalities in (11): <the first one is

deduced from the inequality u ? inf u, while the second one comes from the
H
choice y = x in the definition of Ye 5° The other inequalities are proved
’

PR Ik P i

{ similarly.

Next, we observe that the explicit formula yield the fact that if u

satisfies (10), then S*P(t)u also satisfies (10) for all t > 0, thus

i proving (13).

by We next remark that if u satisfies (10), then the infimum defining

b, Sp(A)ul(x) (resp. the supremum defining s_p(Mu(x)) for A > 0 may be

restricted to points y satisfying
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(16) ly-x|2 € 22m(]y-x]), or
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'y-xl < tx .

Indeed, consider for example Sp(t)u(x), since SF(t)u < u we may restrict

the infimum to points y such that

1 2
uly) + 37 lx-y|“ € ulx)

and using (10) we deduce (16). And, since S_(€)u € u < u,
F —€,6

(16) implies:

u s > u-m(te), and (12) is proved. Notice also that (16) easily yields that

if u satisfies (10), then stF(X)u is Lipschitz for )\ > 0 and

t
- € — -
|StF(X)u(x) s, (X)u(y)l |x-y]|,

Recalling that Stp(t) preserves moduli of continuity for t > 0,

- t
that Ee,ﬁ’ u ,

(14) (in a weak form at least).

¥,y .

we deduce

€
e & are Lipschitz with T s Lipschitz constant. This proves

It remains to show that Ue & ;; P c'*Y(H) and that (15) holds: we
’

will prove these claims for U s the proof being identical for ue 5 We
’

first recall (from (5] for example) that if u € UC(H) Sp(t)u = v (resp.

S_p(t)u) 1is semi-concave (resp. semi-convex) and more precisely that we have

(17) v - — |x|?

2t 2t

Indeed for each y € H, the function
uly) +‘- |x-y |2 - 2t x| 2

is affine in x and thus

v - | |2 = inf [u(y) + |x-Y|2
yeH

is concave on H. Hence, u_, u satisfy
—€’ —¢,¢
u_ - 1—-|x|2 is concave on H
—€ 2¢
(17*)
1 2
+
ll_e'& ?k- 'X'

We next want to show that 2€'6

will again be a general property of S_p(t).

is convex on H

Indeed,

is concave on H (resp. v + ——'|x|2 is convex on H) .

—g |x|2)

-1 2
T Ix]# is concave on H and this

let u € UC(H) satisfy
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u - %x-lxlz is concave on H

for some A > 0, then for 0 < t < X\ v = S_p(t)u satisfies

1 2
u 3 (A-t) |x| is concave on H .
This claim follows from the equality:
1 2 _ 1 2 1 2 1 2 1 2
ux) = gormey %17 = ;:5 faty) = 53 ly1® + 55 v1” - 3¢ byl - gy X9

sup [¥(x,y)]
y€eH

where @(x,y) is - as it is easily checked - concave with respect to (x,y).
We conclude applying the elementary
lemma: let ¢J be jointly concave in (x,y) on H x H and let ¥(x) =

sup F(x,y) < ®, then ¢y is concave on H.
y€eH

Indeed, let x4, xy € H, let € > 0, choose Yir Y2 in H such that
w(x1) < G(x1,y1) + €, w(xz) < ﬁ(xzpyz) + €

then for 6 € [0,1]

W(Ox, + (1=8)x,) > F(Ox, + (1-0)x,, Oy, + (1-8)y,)
> 00(x,,y,) + (1-0)0(x,,y,)

> 6¢(x1) + (1-9)¢(x2) - €

(the first inequality comes from the definition of ¢, the second from the
joint concavity of # and the third from the choices of y4, y;). We
conclude sending € to 0.

In conclusion, we have proved that 2e,6 satisfies EC,G + %'CE,G |x|2
is convex, 2€,6 - %'Ce,d |x|2 is concave. This yields that Y 5 e cl(n)
and we wish to show that this implies in fact 36,6 e C1'1(H) and that (15)
holds. This is well-known in finite dimensions but it seems to require a

justification in general. Denote by v = Be .80 C= ce,G' let x,y,f € H and

-’.
R R R . .
e PP AEIERT SRR S

A
e el K R XY
o L e (T PRSI NP Y SPT

DDA AN & S A d e & i AR SIS pou ard mbet-y

L ara |




A,

PACAF 4

PR e

.y

i
. v

IR
PRI R

consider H4y the vector space spanned by x,y,E. The restriction vy of
v to Hy still satisfies the semi-concavity and semi-convexity properties
of v with the same constant C. Hence v, € C1'1(H1) and

|9 (x) = Pv, (y)] < clx-y|
But ‘7v1(x) = P1Vv(x), Vv1(y) = P1Vv(y) where 1>1 is the orthogonal

projection onto H, and thus

[(7v(x) - "v(y),5)| < clx-y] [F| .

Since F is arbitrary, we conclude.
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uniformly continuous functions by ’ functions. This method relies on
explicit inf-convolution formulas or equivalently on the solutions of Hamilton-

Jacobi equations.
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